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Aharonov-Bohm effect and plasma oscillations in superconducting tubes and rings
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Low-frequency plasma oscillations in superconducting tubes are considered. The emergence of two different
dimensionality regimes of plasma oscillations in tubes exhibiting a crossover from one-dimensional to two-
dimensional behavior, depending on whether kR <1 or kR> 1, where k is the plasmon wave vector and R is the
radius of the tube, is discussed. The Aharonov-Bohm effect pertaining to plasma oscillations in superconduct-
ing tubes and rings, resulting in an oscillatory behavior of the plasmon frequency as a function of the magnetic
flux, with a flux quantum period hc/2e (analog of the Little-Parks effect) is studied. The amplitude of the
oscillations is proportional to (&/R)?, where & is the superconducting coherence length.
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I. INTRODUCTION

Collective excitations of charge density, so-called plasma
oscillations, in small low-dimensional superconducting
structures have been a topic of great interest for a long time.
There are two types of collective excitations in supercon-
ductors. One type is the so-called Carlson-Goldman (CG)
mode.! In this mode the superconducting current oscillations
are balanced by the current of the normal electrons and the
charge densities produced by the superconducting and nor-
mal electrons are mutually compensated. This mode occurs
only for temperatures that are very close to the critical tem-
perature 7,23 The other types of collective excitations are
plasma oscillations which are similar to plasma oscillations
in normal metals. Unlike plasma oscillations in normal met-
als, those occurring in superconductors cannot exist in bulk
superconducting samples because the typical frequencies of
plasma oscillations in the bulk (10'® Hz) are far above the
superconducting gap A. However, in small systems, such as
superconducting wires, thin films, and tubes, the dispersion
relation of plasmons has a soundlike (acoustic) character. In
what follows we will consider only acoustic-type plasma
excitations.* We are interested in plasma oscillations that do
not break the Cooper pairs, i.e., oscillations with frequencies
w<2A/h.

The existence of such (acoustic) plasmons in supercon-
ductors was predicted rather early by Kulik,> who considered
plasma excitations for two geometries: a thin infinite solid
wire [essentially one-dimensional (1D)] and a thin infinite
film [essentially two-dimensional (2D)]. It was found that the
dispersion relation for the wire is a linear function of the
wave vector k along the wire; whereas for the infinite thin
film the frequency of the plasmons is proportional to the
square root of the wave vector.

Formally, plasmons in low-dimensional superconductors
with linear and square-root dispersion are similar to those in
normal conductors:*~8 but unlike the latter they have lower
frequencies and decay rates. Such “superconducting plas-
mons” were theoretically analyzed later’ and they were sub-
sequently observed experimentally in superconducting
films'%!" and wires.!?

The high sensitivity of nonsimply connected supercon-
ducting systems (cylinders and rings) to weak magnetic
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fields is well known and it is manifested by effects such as
flux or fluxoid, quantization,'? and the Little-Parks effect [os-
cillations of the critical temperature as a function of the mag-
netic flux with a period determined by the superconducting
flux quantum Ac/2e (Refs. 14 and 15)]. Both of these effects
may be considered as manifestations of the Aharonov-Bohm
(AB) effect'® (see, e.g., a review in Ref. 17). Consequently, it
is of interest to investigate possible manifestations of the AB
effect in plasma oscillations in superconductors.'®

In this paper we study plasma oscillations in a supercon-
ducting tube with an arbitrary radius R and identify two di-
mensionality regimes (1D and 2D) of the plasmon dispersion
relation and the crossover between them, depending on the
magnitude of kR (see Ref. 19). We demonstrate that the AB
effect, pertaining to plasmons in superconducting tubes and
rings, is expressed as oscillations of the plasmon frequencies
as a function of the magnetic flux with a universal period of
he/2e (the flux quantum of a Cooper pair).

The paper is organized as follows. In Sec. II we discuss
the formalism used to describe plasma oscillations in super-
conducting tubes and calculate their dispersion relations. In
Sec. III we use these results to study the behavior of plas-
mons in tubes and rings placed in a magnetic field. We sum-
marize our results in Sec. IV.

I1. DISPERSION RELATION FOR PLASMA
OSCILLATIONS IN A HOLLOW
SUPERCONDUCTING CYLINDER

In this section we study the propagation of plasma waves
in a hollow superconducting cylinder (tube). Let us take the
symmetry axis of the cylinder as the z axis of a cylindrical
coordinate system and let r=(r, 6) be the radius-vector per-
pendicular to the z axis. For simplicity we assume that the
width of the wall of the cylinder d is much smaller than its
radius R [Fig. 1(a)]. Since the motion of charge carriers is
restricted to be within the material of the cylinder the charge
and current densities can be written in the form

j=j25(r_R)’ p=p25(}"—R), (l)
where 8(r—R) is the Dirac delta function and j, and p, are
the two-dimensional (areal) current and charge density, re-
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FIG. 1. (Color online) A schematic of a superconducting cylin-
der and a ring: The width d of (a) the cylindrical shell and the
diameter d of the wire from which (b) the ring is made of are taken
to be small, i.e., d<<R and d << &, where £ is the correlation length of
the superconductor.

spectively. For the sake of brevity we omit the subscript 2
later.

Both the current flows and the uncompensated charges
will produce electric and magnetic fields around the cylinder.
The Fourier components of the field potentials ¢ and A and
those of the surface charge p and the current density j [j
= (fz,fg), where J~Z is the component of the current along the z
axis, and J, is the circular component] corresponding to the
frequency (w), the longitudinal wave vector (k), and the cir-
cular mode number (m) satisfy the Maxwell equations

10/( 9@ m* | _ _
m(%)‘{““7]“’*4“’35‘“’”’ )
1d( oA 2 - 4w
——(r—)—|:K2+m—2:|A=——77j5(r—R), (3)
ror\ oJr r c

where k=k>—(w/c)? is the modified wave vector that takes
into account retardation effects; here and elsewhere in the
paper a superscript “~” (for example, @) denotes a Fourier-
transformed quantity. From the requirement that the poten-

tials A and @ must be continuous and finite everywhere, one
readily derives the following expressions for the fields on the
surface:

®=—4mpRI,(kR)K,,(kR),

A=-— 4—77j'R1m(KR)Km(KR). 4)

The electric fields acting on the superconducting and normal
electrons inside the cylinder can be written as

E.= 4771'( c—“;IZ - kﬁ)le(KR)Km(KR), (5)

Ey= 47”-(%}0 - %ﬁ)RIm(KR)Km(KR), (6)
C

where I,,(x) and K,,(x) are the modified Bessel functions of
the first and second orders, respectively.

Our discussion so far was general. To describe the super-
conducting regime we adopt a simple two-fluid phenomeno-
logical model®® with a nonlinear superconducting term. We
assume that the system is almost in a stationary state. For the
description of the superconducting component we use the
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time-independent Ginzburg-Landau equation. It was shown
rather early by Bardeen?! that for clean metals (close to T.)
the two-fluid model can be derived directly from the BCS
theory. Subsequently it was also shown that the two-fluid
model can also be successfully used for dirty metals.”? The
two-fluid model assumes that electrons are locally in thermo-
dynamic equilibrium. In the case of low-energy small ampli-
tude long-wavelength collective excitations, such as acoustic
plasma waves, any gradients in the velocities or densities are
sufficiently small and the equation of motion of the super-
conducting electrons takes the form as for classically behav-
ing particles.

The electrons of the superconducting component of our
two-fluid model move without dissipation, whereas the elec-
trons of the normal-fluid dissipate energy. The parameter that
characterizes dissipation of the normal fluid 7 is the average
time between collisions of the normal electrons in the metal.
Unless this collision time is very small there is no significant
difference between the normal and superconducting electrons
since both contribute to the plasma oscillations. The situation
is very different, however, for small collision times w7<<1.
In this case the normal carriers almost do not participate in
the plasma oscillations (see discussion in Sec. IV).

Let us assume that the thickness d of the walls of the
hollow cylinder (tube) is smaller than both the superconduct-
ing coherence length & and the London penetration depth &
(d<<68,8). These assumptions allow us to treat the amplitude
of the order parameter A in the cylinder as a constant and the
current density (in the dirty superconductor) can be written
(from consideration of the time-independent Ginzburg-
Landau equation) in the form (see, e.g., Ref. 23)

2
j=-eN" + o,E, N_‘;‘ff:NX<1 —%), (7)

c

and N, is the concentration of the superconducting electrons,
v=(v,,vy) is their velocity which is a two component vector:
v, is the velocity along the tube, vy is the velocity in the
plane perpendicular to the axis of the tube (v2=vf+vzg), v, 1s
the critical velocity, o, is the normal conductivity, and E is
the external electric field. N°" is the “effective concentration”
of the superconducting electrons in the film, which depends
on the velocity v. The first term in the equation for the above
equation for j describes the supercurrent, whereas the second
term describes the current due to the normal electrons and it
accounts for all the dissipation processes in our system.
The relationship between the current and the velocity of
the superconducting electrons is nonlinear [see Eq. (7)].
When the amplitude of the velocity oscillations in the plasma
wave is much smaller than the critical velocity v, we can
linearize this relationship about the homogeneous solution u

v=u+ v, (8)

where u=(u,,u,) with u,=const and us=const. The uniform
homogeneous background current through the tube has two
components: normal and superconducting. We assume that
the superconductor is very dirty and therefore the normal
conductance of the tube is very small. Because of the very
small normal conductance the normal component of the con-
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stant background current is much smaller than the total back-
ground current and we neglect the voltage drop due to the
normal current through the tube. In general, however, if one
takes into account the voltage due to the normal current,
when considering the currents very close to the critical one,
superconducting states with a uniform time-independent or-
der parameter may become unstable toward small perturba-
tions and the system may become normal or develop a time-
dependent superconducting state (see, e.g., Refs. 24 and 25).
We assume here that we are sufficiently far from the critical
current to assure that such transitions do not occur in the
system under consideration.

Substituting the continuity equation and the equation of
motion written in the Fourier representation

F=—i—F 9)

into Egs. (5) and (6) we derive the relations between the
currents and the velocities of the electrons in the supercon-

ductor
(ﬁz)z_(azz az&)(fz) (10)
Up ag. agy)\7,)
where
47eR ®?
az=—" <k2— ?)]m(KR)Km(KR), (11)
e
4meR(m?> ?
Agg= m w2 (F - ?)Im(KR)Km(KR)’ (12)
dqrekm
Qg =a,9= Wlm(KR)Km(KR)- (13)

e

After Fourier transformation, the relation between the pertur-
bations of the velocity 6v=(6v., dv,) and the current density
0j=(dj,,0jg) can be written as

Ojg bo, bgg) \ S0y
with
2 2
+3
bZZ_Nsed<1-”” 2”Z)+iwa,,—, (15)
u?+3u§
bgg=Ned|( 1 - —— +iwo,—, (16)
UC
u.u
b.g=b.g=2N,ed—5". (17)

c

Combining Egs. (10) and (14) we get a linear algebraic
system of equations

(azz a10)<bzz bz@)(‘sijz):(aﬁz)
ag, agg) \bg, bgs/ \ S0y &g/

In matrix notation the above can be written as

(18)
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FIG. 2. (Color online) The dispersion relation (iw/A versus kR)
for longitudinal plasmons in a superconducting cylinder: Here A is
the energy gap for electron-hole-like excitations inside the super-
conductor, for which we use an estimate (near 7, A
~kgNT(T,—T) (Ref. 23). For long-wavelength (kR<1; see inset)
plasmons, the dispersion relation is approximately linear; whereas
for plasmons with a shorter wavelength kR > 1, the dispersion rela-
tion is similar to the one for plasmons in a thin superconducting
film (w~ Vk). The three different curves in the figure correspond to
three different currents through the tube with I} <[, <I3, with the
current / expressed in terms of the critical current »=1/1.. For each
value of the current, we have found from Eq. (7) the corresponding
value of the uniform background velocity u4 and then substituted it
in Eq. (20). Since higher velocities of the superconducting electrons
correspond to lower effective concentrations fof, the frequency of
the plasma oscillations is lower for the larger currents through the
tube.

(AB-T)6v=0, (19)
where T is the identity matrix.

This system of equations has nontrivial solutions if the
determinant of the matrix C=AB—1I is zero. The coefficients
of matrices A and B are functions of k, m, and w and the
condition D(k,m, w)=det(AB-I)=0 gives implicitly the de-
sired dispersion relation for the plasma excitations in the
cylinder. Since the resulting expression is rather cumbersome
we do not reproduce it here but represent the result graphi-
cally in Fig. 2 (for ¢,=0).

Assuming that the normal conductivity of the material of
the superconductor is zero, the general relation for the fre-
quency of the plasmons can be written approximately in the
form

d 3u? + 1 u*+3u
W= w?(—) [k2R2(1 - 2—20> + m2(1 - z—20
R v; v,

- 4mkR”Z—ZH} L(KR)K,(kR), (20)

p
vy . .
where w;=wyVN,/N, N is total concentration of electrons

(normal and superconducting), and wy=\4me’N/m, is a fre-
quency of plasma oscillations in a bulk normal metal. In
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deriving Eq. (20) we neglected terms of the order of
wfRd/c2< 1, which are related to relativistic retardation ef-
fects and are small for tubes of practical sizes.

There are two important cases for which the dispersion
relation for the plasma oscillations can be written explicitly
in a simple form. These are: (i) the limiting case of plasma
oscillations in an infinite superconducting thin wire (1D
case) and (ii) plasma oscillations in a thin superconducting
thin film (2D case).

In the first case (i), the radius R should be reduced to the
limit when the cylinder becomes a thin thread without a hole
inside. In this limit (R=d) one gets for the circular mode
with m=0, when u,=0

= kd\/(l 3_142)1 (i) 21
= w, =2 ™ ) (21)

c

where we used asymptotic expressions for the modified
Bessel functions for small values of the arguments x<<1
[Io(x)—1 and Ky(x)—-In(yx/2)] and the constant vy
=exp(C) = 1.781 is the exponent of Euler’s constant. Such a
linear dispersion relation is typical for one-dimensional con-
ductors.

To obtain the dispersion relation for the thin supercon-
ducting thin film [case (ii)] one should take the large radius
limit for the cylinder (kR>1). In this case we obtain a
square-root dispersion relation (u,=0)

wkd(  3u
5 1- 7 . (22)

w’=

c

Note that Egs. (21) and (22) reproduce the expressions de-
rived earlier by Kulik for superconducting thin wires and
films [see Egs. (14) and (17) in Ref. 5, where the thin wire is
referred to as a “filament”]. Similarly, using asymptotic ex-
pressions for the modified Bessel functions of high orders
(i.e., m>1) we obtain for kR— 0 the expression (u,=0)

2 2
w-md
T (1—%). (23)

c

This expression shows that for large m the plasmon fre-
quency o is proportional to \m, where m is the circular
mode number.

An interesting property that emerges from the expression
given in Eq. (20) is that the frequency of the plasma oscilla-
tion can be decreased by passing an electric current through
the tube. By increasing the current [i.e., increasing the ve-
locities u, and uy in Eq. (20)] and bringing it close to the
critical current in the film j,,, one can lower the frequency
of the plasmons and cause it to take values that lie below the
energy gap. This lowering can be achieved for a range of
wave vectors that is large enough to allow observation of a
dimensionality crossover from a 1D (kR<<1) to a 2D (kR
>1) behavior;!” see Fig. 2 where we display the plasmon
frequency as a function of the dimensionless radius kR, for
several values of the current I (expressed in terms of %
=1/1,) through the tube (I, <I,<I;). Note that higher cur-
rents through the tube correspond to lower frequencies of the
plasmons. The observed decrease in the plasmon frequency
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originates from the fact that according to Eq. (7), increasing
the current along the tube involves an increase in the veloci-
ties (i.e., u,) of the superconducting electrons in the tube
which in turn causes an effective decrease in the concentra-
tion of the superconducting electrons that participate in
plasma oscillations and determine the plasma frequency.

III. SUPERCONDUCTING TUBES AND RINGS IN AN
EXTERNAL MAGNETIC FIELD

In this section we analyze the influence of a weak mag-
netic field on the propagation of plasma excitations in super-
conducting microstructures. We consider plasmons in two
geometries: tubes and rings.

A. Tubes

Let us consider the situation when the superconducting
microcylinder is placed in a longitudinal magnetic field H
[Fig. 1(a)]. We assume that the magnetic field is parallel to
the symmetry axis of the cylinder and that it is weak enough
such that the system remains superconducting. This geom-
etry allows observation of several interesting effects, such as
quantization of the magnetic flux through a hole in the cyl-
inder, and periodic dependence of the critical temperature.
One may also inquire about the influence of the magnetic
field on the dispersion relation of the plasma oscillations.

Since the cylinder wall is made from a very thin film (we
take the width of the wall of the cylinder to be smaller than
both the London penetration length A, the coherence length
&, and the magnetic length I;=\®/H), the amplitude of the
superconducting order parameter |W| is constant across the
wall of the cylinder. The magnetic field penetrates into the
wall and the flux is not quantized. The quantity that is quan-
tized in this case is the total change in the phase of the order
parameter (so-called “fluxoid”).?* Due to the quantization of
the fluxoid, the average circular velocity u, of the electrons
in the thin-walled cylinder is a periodic function of the mag-

netic flux
“o= n’qun meR . (I)O ’

where ®=7R’H is the magnetic flux through the cylinder
and ®y=7fic/e is the superconducting quantum of the mag-
netic flux. The notation min,[--] in the above formula de-
notes that for a given value of the flux ® one should take a
value of n, which minimizes the velocity u, One should
remember, however, that in order to observe the above quan-
tization phenomenon the radius of the cylinder should not be
too small, in order to allow that even weak fields that do not
destroy the superconductivity may create fluxes ® of the
order of the flux quantum. Note that since the wall thickness
d is small, Little-Parks oscillations (7R*H>®,) might be
observed in samples with mR>H,. < ®,, where H, is the criti-
cal magnetic field for the bulk.?® Inserting the above expres-
sion for the velocity u, into Eq. (20) and considering for
simplicity only the case with m=0, we obtain
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FIG. 3. (Color online) Aharonov-Bohm oscillations (w vs the
dimensionless flux ®/dy) of the dispersion relation for plasmons in
a thin superconducting cylindrical tube. The parameters of the hol-
low tube are the following: radius R=5X 10™* cm and width of the
wall d=10"7 cm; The tube is made from niobium (7,=9.3 K) and
for the order parameter A we use the same estimate as in Fig. 2.
Both figures correspond to plasmons in the zero circular mode m
=0 and a longitudinal wave vector k=0.005/R. In (a) we show the
frequency w of the plasma oscillations as a function of the dimen-
sionless magnetic flux for a fixed temperature 7=8.5 K, for differ-
ent values of the parameter 7=1/1., where [ is the current along the
tube and I, is the critical current. In (b) we show for a fixed current
along the tube (7=0.11,) the frequency of the plasma oscillations as
a function of the dimensionless magnetic flux for a range of
temperatures.

4 2N§ff
W= Lk2Rd Io(kR)Ky(kR), (25a)
where
2 2 2
u h P
NT=N) 1-3=5 - ———mi (‘ )
s s vf mﬁszgmnm " @,
(25b)

From Eq. (25) we can conclude that the frequencies w of the
plasmons, as well as their velocities, demonstrate an AB be-
havior, i.e., a periodic dependence on the magnetic flux with
the fundamental period ®, (Fig. 3). The amplitude of the
oscillations of the frequency for a cylinder with a large ra-
dius (R> ¢) is approximately proportional to (¢/R)?, where &
is the coherence length of the superconductor.

To illustrate the above analysis, we show in Fig. 3 the
behavior of the plasmon frequencies w in a superconducting
tube as a function of the dimensionless flux ®/®,. In Fig.
3(a) we display w for various values of the current charac-
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terized by the parameter n=1/1. where I. is the critical cur-
rent, for a fixed temperature, and in Fig. 3(b) we show w for
several temperatures, while keeping the current at a constant
value /=0.1/,.. The numerical results presented in Fig. 3 were
obtained from the transcendental equation (25) (where the
arguments of the modified Bessel functions depend on «
=\k2-w?/c?). Note [see Fig. 3(a)] that the amplitudes of the
AB oscillations of the frequencies are larger for higher cur-
rents through the tube, while at the same time the absolute
values of the frequencies decrease for larger currents. The
latter decrease of the plasmon frequency for higher currents
was discussed in the context of Fig. 2 at the end of Sec. II.
The increase in the amplitude of the oscillation of the plas-
mon frequencies for larger currents is due to the nonlinear
dependence of the plasmon frequency on the effective con-
centration of superconducting electrons (w~\r/N?T) in Eq.
(25). As a result of this nonlinearity, for a lower concentra-
tion of the superconducting electrons (caused by the flow of
current, or due to higher temperature, with either of these
resulting in effective lowering of the concentration of elec-
trons which may participate in collective plasma oscillations)
a given change in the concentration due to magnetically in-
duced circular currents will yield a relatively larger variation
of the plasma frequency. The decrease in the plasmon fre-
quency as the temperature is increased is illustrated in Fig.
3(b).

B. Rings

We consider here a superconducting ring made from a
wire of diameter d with the radius of the ring R being much
larger than d [i.e., R>d, see Fig. 1(b)]. For small currents in
the ring we can neglect interactions between different parts
of the wire and consider the ring as a straight superconduct-
ing wire with imposed periodic boundary conditions. Let us
fix a point on the ring as the origin of a local coordinate
system and let x be the coordinate along the wire and r the
coordinate perpendicular to the wire. The relation between
the Fourier components of small perturbations of the charge
density and the electrostatic potential can be written as

- V+ 1]
5¢(V’ 0)) = (SﬁlD(V’ 0))111( :2 C)’ (26)

where v=1,2,3,... is now the discrete dimensionless wave
number of the plasma oscillations along the ring (which is
related to the quantized wave vector k along the ring as v
=kR), and v, is the cut-off parameter v.~ R/d, which arises
because of the finite diameter of the wire from which the ring
is made (v<<v,). Using the relation between the scalar po-

tential and the electric field E(v, w)=ivd(v, w)/R, the equa-
tion of motion wi(v,w)=—ieE(v,w)/ m,, and the continuity
equation ki(v,w):wﬁlD(v,w)R written in the Fourier repre-
sentation, we find the expression that connects the perturba-
tion of the carrier velocity with the perturbation of the cur-
rent
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FIG. 4. (Color online) Frequencies of plasma oscillations in a
superconducting ring: The results are shown for a niobium ring with
aradius R=2X 10~ cm. The cross-sectional area of the wire (from
which the ring is made from) is So=5X10"'* cm. (a) The fre-
quency w for different values of ®/®, (the magnetic flux in units of
the flux quantum) as a function of the mode number ». (b) The
frequency w as a function of the dimensionless flux ®/®, plotted
for different values of the wave vector v, illustrating oscillatory
behavior.

~ evz v2+ V2>
0! = dl(v, 1 =1. 27
B0 = 7(0.0) = n< . (27)
At this point we use again a linearized form of Eq. (7)
3u?
dl(v,w)=eNS| 1 - — |ov(v,0), (28)

c

where S=md?/4 is the cross section of the wire making up
the ring.

Following the same arguments as those used by us in our
discussion of the cylindrical system under the influence of a
magnetic field, we can write again the expression for the
uniform component of the velocity as

. {i( 2)] 2
Uo_rnnln meR n_q)o ' ( )

Combining this result with Egs. (27) and (28) we arrive at
the dispersion relation for plasma oscillations in the ring
(Fig. 4),

, Ne*v*S 3K ®\? V42
w = ngz l—ngzverEn n—ao In 2 .

(30)
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For small wave numbers v<<wv,. the frequency of the
plasma oscillation w can be approximated by

o~ (VIR)c(v), (31)

where c(v) is the velocity of the plasmons showing an AB
behavior expressed as a periodic function of the magnetic
flux,

2N,e?
c(v) = \/ 2 3 1- —3ﬁ2 min (n - 2)2 ln<£).
me ngzvg n (I)() v

(32)

The oscillation amplitude of the plasmon frequency in large
rings R > £ is proportional to (£/R)?, which is similar to the
case of the plasma oscillations in a tube (see Sec. IIT A).

Characteristic properties of the plasma oscillation fre-
quencies in superconducting rings are illustrated in Figs. 4(a)
and 4(b). In Fig. 4(a) we display the plasmon frequencies as
a function of the mode number v for different values of the
dimensionless flux ®/®,; the mode numbers are discrete
because of the periodic boundary conditions in the ring. In
accordance with Eq. (31) higher modes (larger v) correspond
to higher frequencies.?” Applied magnetic flux through the
ring induces a circular persistent current, which reduces the
effective concentration of superconducting electrons partici-
pating in the plasma oscillations, with a consequent lowering
of the plasmon frequency. Since the induced current is a
periodic function of the magnetic flux, the frequency of the
plasma oscillations for each mode is also a periodic function
of the magnetic flux with a period hc/2e [see Fig. 4(b)].

IV. SUMMARY

In this paper we have studied collective charge-density
oscillations (plasmons) in superconducting microtubes and
microrings. Using a simple two-fluid model for the supercon-
ductor, we derived the dispersion relation for plasmons in a
cylindrical tube of radius R, i.e., the plasmon frequency w as
a function of kR. We have demonstrated that depending on
the magnitude of kR, a crossover emerges where the plasmon
dispersion relation changes from a linear dependence on kR
[Eq. (21); the 1D limit] to a square-root dependence [Eq.
(22); the 2D limit]. The behavior in these limiting cases is in
agreement with previous theoretical predictions® and ex-
perimental observations.!%-1?

We have also considered the effects of weak magnetic
fields on charge-density excitations in superconducting mi-
crotubes and microrings, and we have shown that the disper-
sion relations for the plasmons are oscillatory functions of
the magnetic flux with a universal period of hc/2e and an
amplitude of the order of (£/R)?. Such behavior of the plas-
mons in superconducting microstructures is a manifestation
of the Aharonov-Bohm effect.

In conclusion we discuss briefly dissipation effects in our
systems. Our model does not take into account dissipations
due to variations of the order parameter. We considered very
long-wavelength plasma oscillations characterized by small
amplitudes |SA|<|A| and frequencies that are restricted by
the superconducting gap frequency (2A/#). For these condi-
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tions dissipation due to variations of the order parameter
~|aA/ dt)? is negligibly small.

The expressions given in Egs. (20) and (30) for the dis-
persion relations of plasmons in superconducting tubes and
rings are written for cases where the normal conductivity of
the superconductors can be neglected. In general, a nonzero
normal conductivity o, adds to the dispersion relation an
imaginary term which expresses energy dissipation and de-
cay of the plasma oscillations. For example, for supercon-
ducting tubes one can write [@=w(0,=0)]

where for the mode with m=0 the ratio of the imaginary part
of the frequency to the real part is

Y@~ (o,/w)k[Rd I,(kR)Ky(kR)]". (34)

For the limiting case of a thin wire (1D) kR<<1, Eq. (34)
gives y/ @~ (0,/ w,)kVRd In[1/(kR)]. In the case of a thin
film (2D) kR> 1, damping effects are described by the ex-
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pression /@~ (o,/ w)\kd, in agreement with the results of
Ref. 5.

The plasmon damping given by Eq. (34) is small for dirty
superconductors (o,—0). Higher normal conductivity re-
sults in stronger dissipation and decay of the plasma oscilla-
tions. This counterintuitive result can be explained qualita-
tively by the following arguments. When the collision time is
small the coherent motion of the plasma waves is created by
the superconducting electrons; whereas normal electrons are
only partly involved in this motion, and the faster they
achieve equilibrium by collisions the better they follow the
collective motion of the other electrons in the plasma wave,
and as a result the system evolves more adiabatically with
less dissipation.
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